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Abstract. Exact analytical expressions for the dielecrric and Kem functions in both relaxation 
and steadystale regimes are explicitly calculated by solving the Fo!&er-Planck-!bmers (FPK) 
equation for the rotational Brownian motion of a linear rigid rotor in 30. The response lunctions 
thus obtained generalize and extend all the results recently published on the topic. me pdculax 
m e s  of the Deby&moluchowski and Rocard diffusion models are straightforwardly recovered. 

1. Introduction 

The understanding of dynamical and electric-field-induced optical properties of intrinsically 
isotropic fluids using the investigations of dielectric relaxation and Ken electric 
birefringence is now a field of some activity ([14] and references therein). These 
phenomena, i.e. dielectric relaxation and electric birefringence, are related to the rotational 
Brownian motion of molecules under the action of an electric stress. This motion has k e n  
studied extensively in recent years, giving rise to interesting theomtical developments. 

The experimental dielectric behaviour of a fluid is generally expressed in terms of the 
complex dielectric constant, or more often in terms of the complex relative permittivity 
E = E‘ - is“, where the permittivity. and E”, the loss factor, are dependent upon the 
frequency 0/2n of the applied complex electric field. When o is zero, E“ vanishes and 
E‘ is the static permittivity E,, related to the static relative susceptibility x s  defined in CGS 
units as xs = (E$ - 1) /4a.  

The complex susceptibility x(o) is defined by 

x(o)  = ~ ’ ( o )  - ix”(o) (1) 

where 
E ‘ @ )  - 1 €”(U) 

4n 4* 
x”(o) = - . x ’ ( 4  = 

The electric polarization P = P(o) is related to the susceptibility x = x(o)  by 

P = x E  (3) 
5 Resent address: Dep&ment de Physique, Facult6 des Sciences. Univenitd Libre de Bnuelles. Campus de la 
Plaine, CP 223, Boulevard du Triomphe, B-1050 Brussels, Belgium and lnstitut de Physique Th6orique, FYMA, 
Universitc Catholique de Lonvain, 2 Chemin du Cyclotron, 8-1348 Louvain-la-Neuve, Belgium. 
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where E = E(@) is the electric field producing P. 
The dielectric relaxation in a dipolar fluid often shows dramatically different behaviour 

at the low- and high-frequency limits. While the former is often dominated by diffusive 
motion of the dipolar molecules, the latter is monitored by ultra-fast motions that can be 
inertial in nature. In many liquids, there is a peak in the dielectric absorption spectrum at 
a relatively high frequency. This absorption, known as Poley absorption, is often attributed 
to collective excitations, like librations or dipolarons. 

Several different approaches have been invoked to study the dielectric relaxation. The 
most successful work of anomalous dispersion and dielectric loss in liquids containing 
polar molecules is that of Debye 151, which proceeds directly from the Smoluchowski 
equation [l], as appears in Einstein’s theory [61 of translational Brownian motion. Under 
the influence of an alternating electric field, a system of polar molecules is supposed to 
diffuse by rotational Brownian motion towards an equilibrium distribution in molecular 
orientation, corresponding to a resultant dielectric polarization. When, at sufficiently high 
frequency, the rotational diffusion becomes too slow for the establishment of equilibrium 
with the applied field, the polarization acquires a component out of phase with the field. As 
a consequence, the displacement current acquires a conductance component in phase with 
the field, resulting in thermal dissipation of energy from the field. The dependence of the 
loss factor on frequency is determined by the relaxation time, which is the interval required 
for the polarization in a static field to decrease to a factor l / e  of its equilibrium value 
when the field is suddenly removed. The Debye theory, originally developed for spherical 
molecules with rigid dipoles and a single relaxation time, has been extended to ellipsoidal 
molecules with hee relaxation times. 

Even recently, much work [l,  3-5.7-12,14-18,23-251 has been devoted to the Debye 
or Smoluchowski equations to describe dielectric and Kerr-effect phenomena in liquids. 
Unfortunately, the rotational diffusion model as originally formulated by Debye is only 
valid at low frequencies cow 6 1 (TD is the Debye relaxation time) because it does not 
include the effects of molecular inertia. The conditions for which inertial effects have to 
be taken into consideration in relaxation phenomena have been discussed by Gross [13]. 
Sack [I41 proposed the modified Smoluchowski equation of rotational Brownian motion of 
molecules in liquids, and determined the conditions of its validity. This equation, which 
holds for small inertial effects, has been applied by Coffey [ 151 to calculate the orientational 
autocorrelation functions of spherically symmetric bodies with a moment inertia and a 
permanent dipole moment, and [16] to study the influence of dipoldipole coupling on 
dielectric and Kerr relaxation. The same equation has also successfully been used recently 
by Alexiewicz [17,18] to treat molecular Kerr relaxation theory for liquids in reorienting 
pulse fields and to take into account the small inertial effects in the time transients of 
nonlinear electric polarization in liquids. For practical purposes [16] the inertial effects will 
only start to come into prominence when Brownian motion is used to model high-frequency 
relaxation processes such as dielectric relaxation and Kerr-effect relaxation. 

In the general case, taking into account inertial effects involves the use of an angular 
velocity-dependent statistical molecular orientation distribution function; this, in turn, 
requires the solving of the generalized Liouville equation or Kramers (Fokker-Planck- 
Kramers (FPK)) equation for the rotational Brownian motions of the molecules in the 
liquid [19]. An account of the modem techniques of solving Kramers equations is to 
be found in [ZO]. Some of these techniques have recently been used by a number of 
authors [U] to describe dielectric relaxation of assemblies of symmetric and asymmetric 
molecules. Except for the recent works [ 2 4 ,  this is not the case for the Ken-effect 
relaxation, where inertial effects for rotation in only two dimensions are all that have been 
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studied in depth. 
In our recent work [3,4], we studied the FPK equation for the rotational Brownian motion 

of a linear polar thin rod-like molecule, subjected to an external electric field, using a series 
expansion method. Our main aim was to generalize the Debye diffusion model and at large 
times, to recover the characteristic times elsewhere observed by a microscopic model 131 
developed for the analysis of the dynamics of rigid rods (modelling rigid linear polymers) 
in solution where the solvent is described in terms of explicit particles [3]. 

In the present paper we present a thorough theoretical analysis of the dielectric and 
Kerr electric functions in both the relaxation and steady-state regimes, taking into account 
higher orders of applied electric field. The physical quantities are derived exactly, using the 
continued fraction methods and some analytical expressions for the susceptibilities and the 
electric birefringence are given. A global approach to the eigenvalue problem, presented in 
the appendix, provides a direct method for obtaining the characteristic times. 

Section 2 deals with the general theoretical 
considerations. In section 3, we derive the after-effect functions for the dielectric and 
Ken relaxation. Relevant analytical expressions are provided for the susceptibilities and 
Kerr phenomena. We show how the physical quantities recently obtained by Kalmykov 
ef  a1 could be recovered using the more general theoretical approach derived here. In 
section 4, we analyse in detail the steady-state dielectric and Kerr functions and provide a 
straightforward method for recovering particular results published in recent literature. 

2. General theoretical considerations 

We consider the rotational Brownian motion of a polar molecule whose shape is 
approximated by a thin rod resembling a needle, and which is subjected to an external 
electric field. 

We assume that the angular velocity of the rotor around its Line of symmeby is zero. 
This is achieved if the moment of inertia about the principal axis of symmetry is also zero. 
We denote by I the moment of inertia of the rotor about the principal axis through the origin 
perpendicular to the line of symmetry. The orientational relaxation of the rod is governed 
by the following torques: 

The paper is organized as follows. 

(i) the electric torque due to the applied electric field; 
(ii) a frictional couple, (where r is the friction coefficient) multiplied by the angular 

(iii) a random driving couple with no preferential direction which can be determined by 

Under these conditions, the rotational motion following the removal of a DC electric 

velocity; 

the Wiener process, responsible for rotational diffusion at equilibrium. 

field can be, described by the following equations [ 1 4 :  

where w, = &(t)sin@’(t); wp = B ( f ) .  p and CY are the polar and azimuthal angles. 
respectively, A; are the components of a white noise driving torque having no preferential 
direction and arising from the Brownian motion of the surroundings. 

As a result of the presence for a long time of a constant electric field, the dipole moment 
has attained a steady value. At time f = 0 the field is removed, and the system under the 
influence of the thermal motion of the environment fends to revert to a random arrangement. 
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This process is called dielectric relaxation and the term 'after-effect' is often employed to 
qualify physical quantities related to the relaxation process. 

M N Hounkannou er a1 

The Ken-effect relaxation function is defined as the angular average [ 1-41 

where An0 = K&. K ,  is the Kerrconstant, Pz(x) = $(3x2-1) is the Legendre polynomial 
of order 2 and 

where p is the dipole moment, all and a1 are the polarizabilities of the molecule parallel 
and perpendicular to the axis of symmetry of the rotor, respectively, kB is the Boltzmann 
constant, T is the absolute temperam. and E is the amplitude of an applied DC field. 

The Fokker-Planck-Kramers (FPK) equation for the probability density function 
W(a, @, o,, 06, f) in configuration angular velocity space associated with the motion is 
[1-41 
aw W, aw aw aw I av a w  -+-- 
at sin@ aa 

+up-+cot@ 
aP 

with the normalization condition 

where B = r / I .  N is a constant, and V is the potential energy. Hereafter, we will use kT 

Our aim is to calculate essentially the aftereffect function, which amounts to calculating 
the autoconelation function of the second-order Legendre polynomial. This autocorrelation 
function describes the decay of the mean value of A n ( f )  following the removal of a 
constant external field at time I = 0. The after-effect function may be calculated from 
the equation [1-3] 

for kBT. 

The after-effect function for the dielectric relaxation is defined as 

When the potential energy V does not depend on the time, any solution of (8) will 
evolve asymptotically towards the equilibrium function W = WO 

Rewriting (8) in terms of a function w = w(a. @, om, os, t )  such that 

w = wow (13) 
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and multiplying the resulting expression by w ,  all the left-hand side of (X), except for the 
term containing the time derivative, disappears after integration over phase space. Thus, 
we obtain 

The relation (14) shows that the time derivative of a positive quantity is negative and equal 
to zero only when w is a function of a, j3 and t only. Subject to this condition, equation (8) 
is valid only for w constant. The normalization condition (9) applied to (13) requires this 
constant to be unity. This means that the positive quantity in (14) will decrease with time 
until the equilibrium distribution function is attained. 

We consider the potential energy [2-4] 

When one neglects all terms of higher order than the second in E @ ) ,  a special type of 
solution can be found in the form 12-41 

(18) 

Here P:(cosp) = 3 sinj3cos,9, P;(cosj3) = 3 sin2@ are the associated Legendre functions 
of order 2. 

In equation (16) the functions X I ( X ,  t )  and Xz(x ,  t)  depend linearly on E( t )  while 
Y l ( x .  t), Y&, t ) ,  Y ~ ( x ,  t) and Z(x, t) depend quadratically on E(?) .  On substituting (16) 
in (8). using (15) and equating the coefficients of the various Legendre functions for the 
first and second order in the electric field, we establish, after some algebra, the following 
formal systems: 

2 n2 = + m a .  

=x- D X = T  (19) 
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where 
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D =  =Y 

0 -fi 

0 

Here y is a dimensionless parameter defined as 

kT 
y = -  

I B 2 .  
We note that the generalized Laguerre polynomials defined as 
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are simply the eigenfunctions of the spatial components of the diagonal terms of the matrices 
- Px, E, and Dz. They obey the relations 

The use of these functions is more relevant, for the differential equation systems giving 
Xi, i = 1.2 (equation (23)) and i‘j, j = 1,3 (equation (26)). than the Laguerre polynomials 
(m = 0 for all diagonal components) used in Kalmykov et al [2] and in our previous 
work [4]. 

Then the systems (23), (26) can be expanded as 

t m  

z = C g j ( t ) L ; ( x ) .  (39) 
id 

Using the expressions (37), (38) and (39), and the relations (32)-(36) and equating the 
coefficients of the various Laguerre polynomials, we get the following differential difference 
equations: 
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where j is any natural integer and b-1 = d-1 = f-1 = 0. 

the integrations in (11) and (10) to obtain 
Exploiting the solution form (16) and the expressions (37) and (38). we can perform 

x ( t )  = +o(t) (43) 

@ ( t )  = fco(0. (44) 
Given the initial condition for W, we can deduce the corresponding initial conditions for 
the coefficients aj, bj3 c,, dj, f j  and gj .  Then, knowing the expression for the applied 
electric field E @ ) ,  we are able to derive the evolution of the relevant physical quantities 
x ( t )  and @(r) by solving only the systems (40) and (41) without (42). These aspects will 
be examined in the following sections. 

3. Dielectric and Kerr relaxation functions 

We consider the regime in which the electric field E(t) is suddenly switched off at 2 = 0: 

Eo t < O  
E ( t )  = 

( 0  2)0  
(45) 

where EO is a constant electric field. For I < 0, the system is in equilibrium. Taking into 
account the second order in Eo, the distribution function is 

I w=- 
8n2kT 2kT 

(46) 

and the corresponding initial values for the coefficients are 

u j = O  j > l  b j=O j ) O  (47) 
@=-  PE0 

k T  

For t ) 0, we apply the Laplace aansform to the differential difference equations as 
+eo 

f ( s )  = L ( f ( t ) )  =I  dte-”f(t). (49) 
0 

Defining the reduced Laplace variable s’ as 
S 

8‘ = - 
B 

we obtain the following two independent systems, taking into account the initial conditions 
previously expressed and (45): 
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and 

4 Y A - i  - ~ ~ j + ( s ' + ~ j + l , Z j t - J - ~ + J ~ ~ j + i  = O  

-J-Jj + (SI + z j  + 2)A + ,/-Zj+, = o 
which describe the relevant physical phenomena. 

3.1. Dielectric relaration function 

The system (51) can be transformed by rewriting each coupled equation in the form 

(52) 

. .  
By eliminating the various ratio of coefficients in this new system, we calculate &e') in a 
continued fraction form. Thus, using (43). we get 

I& 
2Y (57) B 3kT f ( s ' )  = 

2Y 
S' + 

4Y 
s ' + l +  

4Y 

s'+ 5 + 

s ' + 2 +  

6~ 
s ' + 3 +  

6~ 
s ' t 4 +  

+ 6 + .  . . 
The dielectric relaxation function f (s ' ) ,  exact to any order in y. can be now evaluated 

by taking the successive convergents of the continued fraction (57). The ith convergent, 
denoted by f ( i ) (s ' ) ,  will be defined considering only the ( i  t 1) first terms in the series 
14, b;.), assuming the others are equal to zero. 

Defining the reduced susceptibility 
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Fi re 1. Nomalkd dispersion plots of the real and imaginary cornponenu, $(“(o) and 

in the ease of the h t  (I)  and second (2) convergent approximations and for y = 1 in the 
case oi  the fifth convergent approximation (SI ) ,  The order of convergent is indicated by the 
companding number. (0) refen to the Debye dispersion. 

xr 1% (o), of lhe complex susceptibility versus the reduced time ?;I. (r; = 2rD) for y = 0.05 

the first leads to the expressions 

Replacing s’ by i d ,  we can split (58) into its real and imaginary parts, corresponding to 
the usual susceptibility and the loss factor, respectively 

(60) 
For I -+ 0 (corresponding to E -+ oo), since the Debye relaxation time rD = (2yB)- ’  = 
</(2kT)  is finite, the first convergent (equation (59)) gives 

xy(a‘) = xr ; ) (mj)  - i x y ( a f ) .  

when we retake the usual Laplace variahle s. The relation (61) corresponds to the Debye 
approximation; that is, the limit of the inertial response for very high friction and vanishingly 
small inertia; i.e. the limit of the inertial response as y tends to zero or E to infinite. 

This result can be compared with the case of the spherical molecules with their polar 
axes rotating in one plane [l] 

For larger convergents (higher-order convergents of (57)), the effects of the higher-order 
terms in y for small y values are already noticeable with respect to the Debye spechum, 
and the thud convergent coincides with the second convergent response. For y = 1, the 
computation of at least the fifth convergent is necessary in order to get a good approximation. 
See figure 1. 

Figure 2 illustrates Cole-Cole diagram, x’’;’)(u) = f(x’~”(a)), compared with the 
equivalent Debye diagram. Let us note that, for small y values, the second- and thii-order 
convergent responses converge to the first convergent response. 

In general, the analytical form of the response function depends, in higher 
approximations (as is pointed out in [22b]), on the precise nature of the molecular model 
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0.01 0.1 1 IO T&3 IM) 

Figure 2. Plots of the imaginary pan x:‘”’(w) versus the real pan x?(o) of the wmplen 
susceptibility for y = 0.05 in the we of the fin1 convergenl approximation (1) and for y = 1 
in the case of the fifth convergent (5’). The second and Ihird convergents wincide with the hrsl 
convergent. (0) refers to the Debye specuum. 

and on the collision mechanism used to describe the system. Thus, using, for example, 
the collision mechanism corresponding to case (B) studied by Sack in [22b], we obtain the 
susceptibility formula 

(1 + io”)[l+ zd Ei(-z)] 
[l + ze‘ Ei(-z)] +io” 

x (w“) = 

where z = (1 + io”)*/2yI; -Ei(-z) = Lmee-Sds/s [IS], with all physical quantities 
(U”, PI) defined as in [22b]. We draw the reader’s attention to the misprint in  the analogous 
formula given by Sack in [Zb] (his equation (2.35)). The exact formula was also pointed 
out in an earlier work by Gaiduk and Kalmykov [231. 

3.2. Kerr-efect r e h t i o n  function 

To evaluate the Ken-effect relaxation function (44), we handle the third and fourth set of 
recurrence equations of (52) to express 6 only in terms of 2, and Ej+l,  and 8-1 only in 
terms of Jj and Ej .  This amounts to writing 

f i  Jj  
s ’ + 2 ( j + 1 )  

fj - = /-- -cj+1+ 

Eliminating the 5 ’ s  in the second and fifth equations of (52), the system (52) is reduced to 
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By analogy with the computation of the quantity &(sf), we solve the system above 
established to find E&'). Using (44), &s') is expressed as a continued fraction: 

S'+ 
f+l+-?+ ay 

J + 2  r'+2+ I by 

'1+3-&?+25+s,+4+ I6y 24y 

? + 5 - % + & + 6 +  

The continued fraction (70). as the exact expression of the Ken-effect relaxation function 
(equation (IO)), generalizes all approximation solutions recently published in the literature. 
All the higher-order solutions of the Kerr-effect relaxations obtained by Kalmykov et al 
[2]  are simply some approximations of successive convergent5 up to third order of (70). 
Indeed, takmg the first convergent of (70). i.e. ignoring the term Sy, one finds 

which gives the characteristic time ?U) = (1 + y ) m .  
Putting the term 2 y / ( s ' + 2 )  = 0 and s' =io', we recover the result of Kalmykov et af 

(equation (76) in [ 2 ] )  and the characteristic time rm = @ ) ( O ) / E  = g / 3  (cf)(o') being 
the notation adopted in [2]) .  

On computing the second convergent of (70). i.e. when we ignore the term 16y, we 
also recover equation (79) of [2], namely 

with the characteristic time re) = (I +5y)?,2. This result also coincides precisely with 
the results obtained by Burshtein and Temkin for the orientational relaxation time of the 
second-order Legendre polynomial autocorrelation function 1241. 

The next convergent gives 

(73) 
1 - - 

6Y 

s ' + 2 +  

8Y s' + 
16y s ' + l + -  

s' + 2 
sf + 3 - _2 Y + & Y 

2y + 
s + 2  s + 4  
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0.01 1 

Flgure 3. Normalized plots of the real and imaginary p m  of the mmplex Keneffect relaxation 
function An?(o') versus the reduced time for y = 0.05 in the case of different convergent 
approximations and for y = 1 in the case of lhe seventh convergent (79  Note that as o' 
increases all approximations converge rapidly, except for the Debye diffusion model, (0). 

0.6 

05 

0.4 

03 

02 

0 1  

0 

Figure 4. Plots of the imaginary pan versus the real part of the complex Keneffect relaxation 
function An?("') for y = 0.05 in the case of different convergent approximarions and for 
y = 1 in the case of (7'). Details otherwise as in figure Z Note that as 0' increares, all 
approximations converge rapidly, except for the Debye diffusion model, to), 

! (74) 

or (if y <( 1) ignoring the term o ( ~ ~ )  in the development, 
To)  = (1 + 5 y  - ( 3 2 / 3 ) y 2 ) r ~ ~ .  (75) 

This result is exactly the same as in equation (84) of [2] and, comparing it with the second 
convergent result, we can see that 70) e 7 0 )  for small y .  The various convergents are 
presented in figure 4. 

Figures 3 and 4 show that the effects of higher-order convergents are more pronounced 
for the Ken-effect relaxation functions than for the dielectric relaxation function previously 
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shown in figures 1 and 2. This could be easily understood as we deal here with the second- 
order effect in the electric field. The seventh convergent is necessary to compute the Ken 
relaxation function for Y = 1. 

M N Hounkonnou et a1 

4. Steady-state dielectric and Kerr function for E(t) = Eo cos (ut) 

The formal solutions of the coefficients can be written 

aj( t )  = 4.; (@)eiwf + CC 
bj(t) = ib;(o)e’“’ + cc 

cj(t)  = f(c,”(o) + cj(o)eZw‘) + CC 

dj ( f )  = i (dp(o)  + df(w)eZwf) + CC 

fj( t)  = f(j$b) + fi2(o)eZw’) + CC. 

Under these conditions, the response functions take the form 

where the subscript ‘st’ stands for the steady state. 

variable o‘ = o/B, we get the algebraic system of equations 

- 

-,/”a; + (io’+ 2 j  + 1)b; +?-a;+, = 

Replacing these expressions into the two systems (40) and (41) and defining the new 

+ (io‘ + 2j)aj  + ,/-b,! = 0 
(79) 
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The system (79) gives 
X s t ( 4  - - io' 
Kst(0) 

io' + 1 + 
__- 

2Y 
2Y 

io' + 
4Y 

4Y 
iw'+2+ 

6~ 
io' -t 3 + 

6~ 
io' + 4 + 

io' + 5 + . 
1 0 ' t  6 t * * ,  

(82) 
where 

The expression (82) coincides with the result obtained by Sack [22]. 

state susceptibility for the 'ith' convergent as 
By analogy with the previous section's calculations. and defining the reduced steady- 

we get for the first convergent the quantity 

Some relevant particular cases can be straightfonvardly deduced from these results. 
Thus, it is interesting to note that, using w' = w j B ,  equation (85) becomes 

where 
1 t r D = - = -  

2 y B  2kT 
is the Debye relaxation time. 
(equation (90) of [XI) 

Using (77) and (86), we recover the result of Coffey 

derived from the modified Smoluchowski equation. For y << 1, equation (86) becomes the 
Rocard equation [ 1,4,21] 

The characteristic times q, and 1/B = Z/F in this equation can easily be obtained by a 
simple perturbation method (see the appendix). In the particular case when B + 00, we 
recover the Debye result [1,4,21]. namely 
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Figure 5. As fip 1, but for the real and imaginary components of h e  sready-state complex 
susceptibility, x:%(w) and ~ ~ ( ~ ~ ( w ) ,  with y = 0.05 for all convergenl approximations. 
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02 
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Figure 6. As fi 

third convergent coincides with the sewnd convergent identified by (2) in the graph. 

2, but for the real and imaginary p m  of the steady-state complex 
susceptibility, x,,,&J) ,<ZY and x ~ $ ( w ) .  with y = On5 for all convergent approximations. The 

Figure 5 shows the steady-state responses ~ ' ! f ) ~ ~  and x''y,)st versus the reduced time zoo. 
The curve i = 0 corresponds to the ideal Debye-Smoluchowski equation diffusion model 
case. All the curves converge well to zero as rDo increases. Moreover, the inertial effects 
are more pronounced for o > 8'. Figure 6 illustrates how the inertial effects deviate the 
diagrams from the ideal case represented by the Debye spec@um. 

Knowing the solution for the a, and bj. the systems (SO) and (81) can be solved using 
successive approximations. Thus, considering the first convergent approximation for 00 and 
assuming that only 4. do, ci and d i  are different from zero, we get 
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One can check that this result coincides with the expression obtained by Coffey 
(equation (91) in 1211) from the modified Smoluchowski equation. However, let us point 
out the misprint in the definition of y in 1211. The correct expression should not contain 
the factor f. In the limit I -+ 0, which amounts to taking the limit y -+ 0 and B -+ 00 

in the expression (91), and keeping the product y B  = kT/< = D constant, we recover the 
result obtained by Dibbiais [25] from the Smoluchowski equation, namely 

We now take the first convergent approximation for U{ and let us use the first equation 
of (79) to deduce b: . Then, assuming that only the coefficients co, 0 0  4,  fa, 0 0 2  c,, co. $, f$ 
and c: in (SO), (81) are different from zero, we obtain 

Finally, let us consider the second convergent approximation for ad and let us use the first 
expression in (79) to deduce b; . Thus, assuming that only c:, d t ,  fi, cy, 4, 4, ft and 
c: in (SO), (81) are dierent  from zero, we get 

E' 

(94) 
y (+)2 (-30n + 8io' + 4) -ad$ + cc. ' 60(4iy of + 4y - i d  - 3wn + 2io') + 6 0  

The ratios for the time-independent component and for the 20 frequency time-dependent 
component, taken separately for each ith approximation (the first superscript 0 (or 2)  
in the expressions standing for the timeindependent (01 2w frequency time-dependent) 
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y = 0.05 
R= I 

0.01 ai 1 IO $U IW 

Figure 7. As figure 3, but for the real and imaginary wmpnents of the time-dependent 20 
fKqUenCY res" of the steady-me complex Keneffecr function, An:$(@ and AII:Y~~"(cIJ). 
with y = 0.05 for all convergent appmximations. 

nz o 0.1 Oh 0.6 0.8 ~,,, 1 

A";,,(*) 

Figure S. As figure 4. but for the red aod imaginary parts of the &-de ndent 20 frequency 
term of the steady-stale complex Keneffect function, An:Yi:'(o) and Ang(01,  withy = 0.05 
for all convergent approximations. 

component), are 

Defining the parameter 
@ll - a ) k T  

fi= 
R =  

we get, for the abovementioned first approximation 
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Figures 7 and 8 show the influence of the inertial effects on the steady-state Kerr 
functions. All the responses converge well, except for the first convergent. Moreover, one 
can see that the modified Smoluchowski equation (curve (1)) overestimates the effects of 
inertia. 

In conclusion, we note that all the continued fraction solutions obtained in this work 
converge well. Indeed, transforming them by the division of each uth numerator, a,,  by 
the product of two consecutive (U - 1)th and uth denominators, b,-lb,, the convergence 
criterion [26,27] 

can be checked. 
The new choice of the generalized Laguerre basis used in this work is imposed by the 

nature of the uncoupled systems of the differential difference equations deduced from the 
master equation (equation (8)) in which the formal solution (16) is replaced. Instead of 
using only the Laguerre polynomials with m = 0, as in recent works [2,4]. this allows us 
to give, straightforwardly and more easily, exact analytical expressions for the dielectric 
and Kerr-effect functions in the case of the rotational Brownian motion of a rigid linear 
molecule in 3D. 

Finally, we would like to point out that any interested reader can obtain on request a 
more extended version of this paper, including all explicit formulae. 

Appendix 

Let us consider the system (51) as an eigenvalue problem where s‘ is replaced by A,. We 
then have the matrix equation 

where HO is the diagonal matrix and V is the perturbation term wi t ten  as 

H o + f i V =  

0 -e 0 0 0 .. 
6 -1 -fi .. 0 0 .. 

0 f i  -2 .. .. 
.. .. .. -m 0 .. 
0 0 .. wT7 - 2 j  -dZ7FiF .. 
0 0 .. 0 d % X E  - ( 2 j +  1) 

.. I. .. .. .. 
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and where 

M N Hounkonnou et a1 

. .  
The solution of (A4) for n even is 

and for n odd 

both with the corresponding eigenvalue 
A?) = -n . 
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To solve (AS), we first project at left with the transposed orthonormal solution of order 0, 
tXf) to obtain 

(AV 'Xf)(H0 - Ai0))X;') = tX(0)(,I.A1) - V)X,'O), 

(A% An - n n  

Ai') = 0. W O )  

Next, projecting (As) at left with 'X!?) for n' # n, we get, using the orthonormality relations, 

'X:?)HoX,") + tX(o)VXfO) n' n = tX$)Aio)XL1) , (All)  

( n ' - n )  X,, n' n 

XA1) = ~ ( t X $ ) X p ) X ; o )  ( ~ 1 3 )  

Because of (A4), equation (A8) becomes 
(1) - tX(O)VX(O) 

and, using (AI), we compute 

Using (A4) and (A7), we deduce 

( A W  t "x") = tX(O)"X(O) 

which allows us to compute 

"'#" 

Using (Al), for n = 0 we get 
X$' = fix?' 

X p  = m X 2 1  + &XF, 

Xp = m X $ ) l  + m X E l  , 

for n # 0 even 

and for n odd 

To solve (A6), similarly to (A5) we project at left with tX:o) to determine We get 
43 (2) - - tX@)VX'1' n n  (A 18) 

Ai2) = -2 ( A W  

and using expressions (A15XA17), for n even we compute 

and for n odd 

Ai2) = 0. (-420) 

A" = -n - 2y + 0(y3 f l )  

So, accounting for second order in fi, for n even we obtain 

(MI)  
and for n odd 

A" = -n + o ( ~ ~ / ~ )  
with SA,, = -(rJ1, t;r being the characteristic times. 

Debye and the Rocard characteristic times (equation (89)). 
In the particular cases of n = 0 and n = 1 and for y << 1,  we recover respectively the 
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